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Chapter 6

THE BINOMIAL THEOREM

In Chapter 1 we defined as the coefficient of an-rbr in the expansion of (a + b)n, and
n
r

tabulated these coefficients in the arrangement of the Pascal Triangle:

n Coefficients of (a + b)n

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

... . . . . . . . .

We then observed that this array is bordered with 1's; that is,  for n =
n
0

' 1 and
n
n

' 1

0, 1, 2, ... .  We also noted that each number inside the border of 1's is the sum of the two closest
numbers on the previous line.  This property may be expressed in the form 

n

r&1
%

n

r
'

n%1
r

.(1)

This formula provides an efficient method of generating successive lines of the Pascal Triangle,
but the method is not the best one if we want only the value of a single binomial coefficient for a

large n, such as   We therefore seek a more direct approach.
100
3

.

It is clear that the binomial coefficients in a diagonal adjacent to a diagonal of 1's are the
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numbers 1, 2, 3, ... ; that is,  Now let us consider the ratios of binomial coefficients
n
1

' n.

to the previous ones on the same row.  For n = 4, these ratios are:

(2)     4/1, 6/4 = 3/2, 4/6 = 2/3, 1/4.

For n = 5, they are

(3)  5/1, 10/5 = 2, 10/10 = 1, 5/10 = 1/2, 1/5.

The ratios in (3) have the same pattern as those in (2) if they are rewritten as 

  5/1, 4/2, 3/3, 2/4, 1/5.

It is easily seen that this pattern also holds on the line for n = 8, and that the coefficients on that
line are therefore:

1,
8
1

,
8
1
@ 7
2

,
8
1
@ 7
2
@ 6
3

,
8
1
@ 7
2
@ 6
3
@ 5
4

, ... .(4)

The binomial coefficient  can be rewritten as
8
3

'
8@7@6
1@2@3

8@7@6@5@4@3@2@1
1@2@3@5@4@3@2@1

'
8!

3!5!
.

Similarly,
8
2

'
8!

2!6!
and

8
4

'
8!

4!4!
.

This leads us to conjecture that holds in all cases.  We prove this by
n
r

'
n!

r!(n & r)!

mathematical induction in the following theorem.

THEOREM:  If n and r are integers with   then0 # r # n,

n
r

'
n!

r!(n & r)!
.

   Proof:  If n = 0, the only allowable value of r is 0 and = 1.  Since
0
0
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n!
r!(n & r)!

'
0!

0!0!
' 1

the formula holds for n = 0.

Now let us assume that it holds for n = k.  Then

k
r&1

'
k!

(r&1)!(k & r % 1)!
,

k
r

'
k!

r!(k & r)!
.

Using (1), above, we now have

k%1
r

'
k

r&1
%

k
r

'
k!

(r & 1)!(k & r % 1)!
%

k!
r!(k & r)!

'
k!r

(r & 1)!r(k & r % 1)!
%

k!(k & r % 1)
r!(k & r)!(k & r % 1)

'
k!(r % k & r % 1)

r!(k & r % 1)!

'
k!(k % 1)

r!(k & r % 1)!

'
(k % 1)!

r!(k & r % 1)!
.

Since the formula

k%1
r

'
(k % 1)!

r!(k & r % 1)!

is the theorem for n = k + 1, the formula is proved for all integers  with the exception thatn $ 0,
our proof tacitly assumes that r is neither 0 nor k + 1; that is, it deals only with the coefficients
inside the border of 1's.  But the formula

k%1
r

'
(k % 1)!

r!(k & r % 1)!
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shows that each of
k%1

0
and

k%1
k%1

is
(k % 1)!

0!(k % 1)!
' 1.

Hence the theorem holds in all cases.

The above theorem tells us that the coefficient of  isx ry s in (x % y)n

n!
r!s!

.

Since this expression has the same value when r and s  are interchanged, we again see that the
binomial coefficients have the symmetry relation 

n

r
'

n

n&r
.

By writing out the factorials more explicitly, we see that

 

n

r
'

n!
r!(n & r) !

'
n(n & 1)(n & 2)...(n & r % 1)(n & r)(n & r & 1)...2@1

1@2@3...r(n & r)(n & r & 1)...2@1
.

Cancelling common factors, we now have

n
r

'
n(n & 1)(n & 2) ... (n & r % 1)

1@2@3 ... r
.

This is the alternate form of the theorem illustrated for n = 8 in (4), above.

We can now rewrite the expansion of (a + b)n in the form
  

(a % b)n ' a n % na n&1b %
n(n & 1)

1@2
a n&2b 2 % ...

%
n(n & 1)...(n & r % 1)

1@2 ... r
a n&rb r % þ % b n.

  
This last formula it generally called the Binomial Theorem.
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The formulas

for r > 0
n
0

' 1,
n
r

'
n(n & 1)...(n & r % 1)

1@2 ... r

enable us to extend the definition of previously defined only for integers n and r with
n
r

,

 to allow n to be any integer.  We then have, for example,0 # r # n,
2
5

' 0, &2
7

' &8,

and 
&3
8

' 45.

It can easily be shown that the formula

n
r&1

%
n
r

'
n%1

r

holds with the extended definition as it did with the original definition.

Now the identity

2
m
2

%
m
1

' 2
m(m & 1)

2
% m ' m 2 & m % m ' m 2

holds for all integers m, and we can use the formulas

1
1

%
2
1

%
3
1

% ... %
n
1

'
n%1

2

1
2

%
2
2

%
3
2

% ... %
n
2

'
n%1

3

to show that
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12 % 22 % ... % n 2

' 2 1
2

%
1
1

% 2 2
2

%
2
1

% ... % 2 n
2

%
n
1

' 2 1
2

%
2
2

% ... %
n
2

%
1
1

%
2
1

% ... %
n
1

' 2 n%1
3

%
n%1

2

' 2
(n % 1)n(n & 1)

6
%

(n % 1)n
2

'
2n 3 & 2n

6
%

3n 2 % 3n
6

'
2n 3 % 3n 2 % n

6

'
n(n % 1)(2n % 1)

6
.

Frequently in mathematical literature a short notation for sums is used which involves the Greek
capital letter sigma, written   In this notation,'.

a1 % a2 % ... % an

is written as

j
n

i ' 1

ai

and the auxiliary variable i is called the index of summation.  Thus, for example,

j
5

i ' 1
i ' 1 % 2 % 3 % 4 % 5 ' 15

j
6

i ' 1

1 ' 1 % 1 % 1 % 1 % 1 % 1 ' 6

j
n & 1

j ' 1

j 2 ' 12 % 22 % 32 % ... % (n & 1)2.

Under the capital sigma, one indicates the symbol that is used as the index of summation and the
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initial value of this index.  Above the sigma, one indicates the final value.  The general

polynomial  of degree n can be written asa0x
n % a1x

n&1% ... % an&1x % an

j
n

k ' 0

ak x n&k.

One easily sees that

j
n

i ' 1

ai % j
n

i ' 1

bi ' j
n

i ' 1

(ai % bi)

since

j
n

i ' 1

ai % j
n

i ' 1

bi ' (a1 % a2 % ... % an) % (b1 % b2 % ... % bn)

' (a1 % b1) % (a2 % b2) % ... % (an % bn)

' j
n

i ' 1

(ai % bi).

Also, the proof of which is left to the reader.  However,j
n

i ' 1

(cai) ' c j
n

i ' 1

ai,

j
n

i ' 1
ai j

n

i ' 1
bi … j

n

i ' 1
(aibi)

as can easily be shown by counterexample.  (See Problem 19 of this chapter.)

A corresponding notation for products uses the Greek letter pi:

k
n

i ' 1

ai ' a1a2 ... an.

In this notation, n! for can be expressed asn $ 1 k
n

k ' 1

k.

In solving problems stated in terms of the sigma or pi notation, it is sometimes helpful to
rewrite the expression in the original notation.
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Problems for Chapter 6

1.  Find each of the following:

     (a)  The coefficient of x4y16 in (x + y)20.
     (b)  The coefficient of x5 in (1 + x)15.
     (c)  The coefficient of x3y11 in (2x - y)14.

2.  Find each of the following:

     (a) The coefficient of a13b4 in (a + b)17.
     (b) The coefficient of a11 in (a - 1)16.
     (c) The coefficient of a6b6 in (a - 3b)12.

3.  Find integers a, b, and c such that for all integers n.6
n
3

' n 3 % an 2 % bn % c

4.  Find integers p, q, r, and s such that for all                  4!
n
4

' n 4 % pn 3 % qn 2 % rn % s

     integers n.

5.  Prove that
n
3

' 0 for n ' 0, 1, 2.

6.  Given that k is a positive integer, prove that
n
k

' 0 for n ' 0, 1, ... , k & 1.

7.  Find .
&1
r

for r ' 0, 1, 2, 3, 4, and 5.

8.  Find .
&2
r

for r ' 0, 1, 2, 3, 4, and 5.

9.  Prove that
&3
r

' (&1)r r%2
2

for r ' 0, 1, 2, ... .
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10.  Prove that
&4
r

' (&1)r r%3
3

for r ' 0, 1, 2, ... .

11.  Let m be a positive integer and r a non-negative integer.  Express  in terms of a         
&m
r

       binomial coefficient
n
k

with 0 # k # n.

12.  In the original definition of as a binomial coefficient, it was clear that it was always an  
n
r

       integer.  Explain why this is still true in the extended definition.

13.  Show that for integers a, b, and n, with              
n
a

n&a
b

'
n!

a!b!(n & a & b)!

a $ 0, b $ 0, and n $ a % b.

14.  Given that n = a + b + c + d and that a, b, c, and d are non-negative integers, show that

n
a

n&a
b

n&a&b
c

n&a&b&c
d

'
n!

a!b!c!d!
.

15.  Express  as a polynomial in n.j
n

k ' 1

[a % (k & 1)d]

16.  Express compactly without using the  notation.A
n

k ' 1
(2k) A

17.  Show that A
n

k ' 1
ak ' A

n&1

j' 0
aj%1.

18.  Show that  j
n&2

k ' 1

bk ' j
n

i ' 3

bi&2.
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19.  Evaluate  and show that they are not always equal.j
2

i ' 1

ai j
2

i ' 1

bi and j
2

i ' 1

(aibi)

20.  Show that A
n

i ' 1
ai A

n

i ' 1
bi ' A

n

i ' 1
(aibi ).

21.  Prove by mathematical induction that j
n

i ' 0

s % i

s
'

s % 1 % n

s % 1
.

22.  Prove that j
n

j' 0

s % j

j
'

s % 1 % n

n
.

23.  Express  as a polynomial in n.j
n&2

k ' 1

k(k % 1)
2

24.  Express  as a polynomial in n.j
n&2

k ' 1

k % 1
k & 1

25.  Write  as a polynomial in n, and then use the fact that  is           6
n
3

%
n
2

%
n
1

n
r

       always an integer to give a new proof that n(n2 + 5) is an integral multiple of 6 for all              
       integers n.

26.  (a)  Write  as a polynomial in n.4!
n
4

%
n
3

%
n
2

%
n
1

       (b)  Show that n4 - 2n3 + 11n2 + 14n is an integral multiple of 24 for all integers n.

27.  Find numbers s and t such that n3 = n(n - 1)(n - 2) + sn(n - 1) + tn holds for n = 1 and n = 2.

28.  Find numbers a and b such that  for all integers n.n 3 ' 6
n
3

% a
n
2

% b
n
1
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29.  Find numbers r, s, and t such that n4 = n(n - 1)(n - 2)(n - 3) + rn(n - 1)(n - 2) + sn(n - 1) + tn  
       for n = 1, 2, and 3.  Using these values of r, s, and t, show that 

n 4 ' 24
n
4

% 6r
n
3

% 2s
n
2

% t
n
1

       for all integers n.

30.  Find numbers a, b, c, and d such that 

n 5 ' 5!
n
5

% a
n
4

% b
n
3

% c
n
2

% d
n
1

.

31.  Express  as a polynomial in n.j
n

k ' 1

k 4

32.  Express  as a polynomial in n.j
n

k ' 1

k 5

33.  We define a sequence S0, S1, S2, ... as follows:  When n is an even integer 2t, let

         When n is an odd integer 2t + 1, let   Sn ' S2t ' j
t

j' 0

t % j

t & j
. Sn ' S2t%1 ' j

t

j' 0

t % 1 % j

t & j
.

       Prove that S2t + S2t+1 = S2t+2 and S2t+1 + S2t+2 = S2t+3 for t = 0, 1, 2, ... .

 34.  For the sequence defined in Problem 33, prove that Sn is the Fibonacci number Fn+1.

*35.  Prove the following property of the Fibonacci numbers:

j
n

j ' 0

n

j
(&1)jFs%2n&2j ' Fs%n.

*36  Prove an analogue of the formula of Problem 35 for the Lucas numbers.

  37  Find a compact expression, without using the sigma notation, for 

1@n % 2(n & 1) % 3(n & 2) % þ % (n & 1)@2 % n@1,

       that is, for j
n&1

k ' 0

(k % 1)(n & k).


